Add like
Add dislike
Add to saved papers

Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats.

In this study, 120 lactic acid bacterial strains from different fermented dairy products as well as 10 bacterial intestinal isolates were evaluated for in vitro and in vivo degradation of various food azo dyes. Of these isolates, lactic acid bacteria (LAB) strains 13 and 100 and the intestinal isolates Ent2 and Eco5 exhibited 96-98% degradation of the tested food azo dyes within 5-6 hours. High performance liquid chromatography mass spectra of sunset yellow (E110) and carmoisine (E122) anaerobic degradation products by the intestinal isolates showed that they were structurally related to toxic aromatic amines. For an in vivo study, eight groups of rats were treated for 90 days with either the food azo dyes or their degradation products. All groups were kept for a further 30 days as recovery period and then dissected at 120 days. Hematological, histopathological, and protein markers were assessed. Rats treated with either E110/E122 or their degradation products exhibited highly significant changes in red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and white blood cell count. In addition, alanine and aspartate aminotransferases, amylase, total bilirubin, blood urea nitrogen, creatinine, glucose, total protein, and globulins were significantly increased. Furthermore, marked histopathological alterations in the liver, kidney, spleen, and small intestine were observed. Significant decreases in inflammation and a noticeable improvement in the liver, kidney, spleen, and small intestine of rats treated with LAB and food azo dyes simultaneously were observed. Finally, these results provide a reliable basis for not only a better understanding of the histological and biochemical effects of food additives, but also for early diagnostics. In addition, LAB strains 13 and 100 may play an important role as potential probiotics in food and dairy technology as a probiotic lactic acid starter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app