JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydrolysis of isoflavone in black soy milk using cellulose bead as enzyme immobilizer.

The establishment of a catalytic system to enrich isoflavone aglycones in black soybean milk was investigated in this study. Beta-glucosidase, which was covalently immobilized onto cellulose beads, exhibited a significant efficiency for the conversion of 4-nitrophenyl β-d-glucuronide to p-nitrophenol over the sol-gel method. The Michaelis constant (Km ) of the cellulose bead enzymatic system was determined to be 1.50±0.10 mM. Operational reusability of the cellulose bead enzymatic system was justified for more than 10 batch reactions in black soy milk. Moreover, the storage stability verification indicated that the cellulose bead catalytic system was able to sustain its highest catalytic activity for 10 days. High-performance liquid chromatography results demonstrated that this enzymatic system required only 30 minutes to achieve complete isoflavone deglycosylation, and the aglycone content in the total isoflavones in black soy milk was enriched by 67% within 30 minutes by the cellulose bead enzymatic system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app