Journal Article
Validation Study
Add like
Add dislike
Add to saved papers

Prediction of genome-wide DNA methylation in repetitive elements.

Nucleic Acids Research 2017 September 7
DNA methylation in repetitive elements (RE) suppresses their mobility and maintains genomic stability, and decreases in it are frequently observed in tumor and/or surrogate tissues. Averaging methylation across RE in genome is widely used to quantify global methylation. However, methylation may vary in specific RE and play diverse roles in disease development, thus averaging methylation across RE may lose significant biological information. The ambiguous mapping of short reads by and high cost of current bisulfite sequencing platforms make them impractical for quantifying locus-specific RE methylation. Although microarray-based approaches (particularly Illumina's Infinium methylation arrays) provide cost-effective and robust genome-wide methylation quantification, the number of interrogated CpGs in RE remains limited. We report a random forest-based algorithm (and corresponding R package, REMP) that can accurately predict genome-wide locus-specific RE methylation based on Infinium array profiling data. We validated its prediction performance using alternative sequencing and microarray data. Testing its clinical utility with The Cancer Genome Atlas data demonstrated that our algorithm offers more comprehensively extended locus-specific RE methylation information that can be readily applied to large human studies in a cost-effective manner. Our work has the potential to improve our understanding of the role of global methylation in human diseases, especially cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app