JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain.

Background: [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the current study, we compared the effect of serotonin releaser fenfluramine on the binding of [11C]Cimbi-36, [11C]MDL 100907 (a serotonin 2A receptor antagonist radioligand), and [11C]AZ10419369 (a serotonin 1B receptor partial agonist radioligand with established serotonin sensitivity) in the monkey brain.

Methods: Eighteen positron emission tomography measurements, 6 for each radioligand, were performed in 3 rhesus monkeys before or after administration of 5.0 mg/kg fenfluramine. Binding potential values were determined with the simplified reference tissue model using cerebellum as the reference region.

Results: Fenfluramine significantly decreased [11C]Cimbi-36 (26-62%) and [11C]AZ10419369 (35-58%) binding potential values in most regions (P < 0.05). Fenfluramine-induced decreases in [11C]MDL 100907 binding potential were 8% to 30% and statistically significant in 3 regions. Decreases in [11C]Cimbi-36 binding potential were larger than for [11C]AZ10419369 in neocortical and limbic regions (~35%) but smaller in striatum and thalamus (~40%). Decreases in [11C]Cimbi-36 binding potential were 0.9 to 2.8 times larger than for [11C]MDL 100907, and the fraction of serotonin 2A receptor in the high-affinity state was estimated as 54% in the neocortex.

Conclusions: The serotonin sensitivity of serotonin 2A receptor agonist radioligand [11C]Cimbi-36 was higher than for antagonist radioligand [11C]MDL 100907. The serotonin sensitivity of [11C]Cimbi-36 was similar to [11C]AZ10419369, which is one of the most sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app