Add like
Add dislike
Add to saved papers

Finite-Time Synchronization of Discontinuous Neural Networks With Delays and Mismatched Parameters.

This paper investigates the problem of finite-time drive-response synchronization for a class of neural networks with discontinuous activations, time-varying discrete and infinite-time distributed delays, and mismatched parameters. In order to cope with the difficulties induced by discontinuous activations, time delays, as well as mismatched parameters simultaneously, new 1-norm-based analytical techniques are developed. Both state feedback and adaptive controllers with and without the sign function are designed. Based on differential inclusion theory and Lyapunov functional method, several sufficient conditions on the finite-time synchronization are obtained. Our results show that the controllers with a sign function can reduce the conservativeness of control gains and the controllers without a sign function can overcome the chattering phenomenon. Numerical examples are given to show the effectiveness of the theoretical analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app