Add like
Add dislike
Add to saved papers

Partial-Nodes-Based State Estimation for Complex Networks With Unbounded Distributed Delays.

In this brief, the new problem of partial-nodes-based (PNB) state estimation problem is investigated for a class of complex network with unbounded distributed delays and energy-bounded measurement noises. The main novelty lies in that the states of the complex network are estimated through measurement outputs of a fraction of the network nodes. Such fraction of the nodes is determined by either the practical availability or the computational necessity. The PNB state estimator is designed such that the error dynamics of the network state estimation is exponentially ultimately bounded in the presence of measurement errors. Sufficient conditions are established to ensure the existence of the PNB state estimators and then the explicit expression of the gain matrices of such estimators is characterized. When the network measurements are free of noises, the main results specialize to the case of exponential stability for error dynamics. Numerical examples are presented to verify the theoretical results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app