Add like
Add dislike
Add to saved papers

Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy.

Cardiac hypertrophy often refers to the abnormal growth of heart muscle through a variety of factors. The mechanisms of cardiomyocyte hypertrophy have been extensively investigated using neonatal rat cardiomyocytes treated with phenylephrine. α-Enolase is a glycolytic enzyme with "multifunctional jobs" beyond its catalytic activity. Its possible contribution to cardiac dysfunction remains to be determined. The present study aimed to investigate the change of α-enolase during cardiac hypertrophy and explore its role in this pathological process. We revealed that mRNA and protein levels of α-enolase were significantly upregulated in hypertrophic rat heart induced by abdominal aortic constriction and in phenylephrine-treated neonatal rat cardiomyocytes. Furthermore, knockdown of α-enolase by RNA interference in cardiomyocytes mimicked the hypertrophic responses and aggravated phenylephrine-induced hypertrophy without reducing the total glycolytic activity of enolase. In addition, knockdown of α-enolase led to an increase of GATA4 expression in the normal and phenylephrine-treated cardiomyocytes. Our results suggest that the elevation of α-enolase during cardiac hypertrophy is compensatory. It exerts a catalytic independent role in protecting cardiomyocytes against pathological hypertrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app