JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Statistical Mechanical Model for Adsorption Coupled with SAFT-VR Mie Equation of State.

We extend the SAFT-VR Mie equation of state to calculate adsorption isotherms by considering explicitly the residual energy due to the confinement effect. Assuming a square-well potential for the fluid-solid interactions, the structure imposed by the fluid-solid interface is calculated using two different approaches: an empirical expression proposed by Travalloni et al. ( Chem. Eng. Sci. 65 , 3088 - 3099 , 2010 ), and a new theoretical expression derived by applying the mean value theorem. Adopting the SAFT-VR Mie ( Lafitte et al. J. Chem. Phys. , 139 , 154504 , 2013 ) equation of state to describe the fluid-fluid interactions, and solving the phase equilibrium criteria, we calculate adsorption isotherms for light hydrocarbons adsorbed in a carbon molecular sieve and for carbon dioxide, nitrogen, and water adsorbed in a zeolite. Good results are obtained from the model using either approach. Nonetheless, the theoretical expression seems to correlate better the experimental data than the empirical one, possibly implying that a more reliable way to describe the structure ensures a better description of the thermodynamic behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app