Add like
Add dislike
Add to saved papers

Kinetic-Controlled Formation of Bimetallic Metal-Organic Framework Hybrid Structures.

Small 2017 September 15
Heterometallic metal-organic frameworks (MOFs) are constructed from two or more kinds of metal ions, while still remaining their original topologies. Due to distinct reaction kinetics during MOF formation, partial distribution of different metals within a single MOF crystal can lead to sophisticated heterogeneous nanostructures. Here, this study reports an investigation of reaction kinetics for different metal ions in a bimetallic MOF system, the ZIF-8/67 (M(2-mIM)2 , M = Zn for ZIF-8, and Co for ZIF-67, 2-mIM = 2-methylimidazole), by in situ optical method. Distinct kinetics of the two metals forming single-component MOFs are revealed, and when both Co and Zn ions are present in the starting solution, homogeneous distributions of the two metals are only achieved at high Co/Zn ratio, while at low Co/Zn ratio concentration gradient from Co-rich cores to Zn-rich shells is observed. Further, by adding the two metals in sequence, more sophisticated structures are achieved. Specifically, when Co(2+) is added first, ZIF-67@ZIF-8/67 core-shell nanocrystals are achieved with tunable core/shell thickness ratio depending on the time intervals; while when Zn(2+) is added first, only agglomerates of irregular shape form due to the weak nucleation ability of Zn(2+) .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app