JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydration Friction in Nanoconfinement: From Bulk via Interfacial to Dry Friction.

Nano Letters 2017 October 12
The viscous properties of nanoscopically confined water are important when hydrated surfaces in close contact are sheared against each other. Numerous experiments have probed the friction between atomically flat hydrated surfaces in the subnanometer separation regime and suggested an increased water viscosity, but the value of the effective viscosity of ultraconfined water, the mechanism of hydration layer friction, and the crossover to the dry friction limit are unclear. We study the shear friction between polar surfaces by extensive nonequilibrium molecular dynamics simulations in the linear-response regime at low shearing velocity, which is the relevant regime for typical biological applications. With decreasing water film thickness we find three consecutive friction regimes: For thick films friction is governed by bulk water viscosity. At separations of about a nanometer the highly viscous interfacial water layers dominate and increase the surface friction, while at the transition to the dry friction limit interfacial slip sets in. Based on our simulation results, we construct a confinement-dependent friction model which accounts for the additive friction contributions from bulklike water, interfacial water layers, and interfacial slip and which is valid for arbitrary water film thickness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app