Add like
Add dislike
Add to saved papers

Dose-dependent interactions between two loci trigger altered shoot growth in BG-5 × Krotzenburg-0 (Kro-0) hybrids of Arabidopsis thaliana.

New Phytologist 2018 January
Hybrids occasionally exhibit genetic interactions resulting in reduced fitness in comparison to their parents. Studies of Arabidopsis thaliana have highlighted the role of immune conflicts, but less is known about the role of other factors in hybrid incompatibility in plants. Here, we present a new hybrid incompatibility phenomenon in this species. We have characterized a new case of F1 hybrid incompatibility from a cross between the A. thaliana accessions Krotzenburg-0 (Kro-0) and BG-5, by conducting transcript, metabolite and hormone analyses, and identified the causal loci through genetic mapping. The F1 hybrids showed arrested growth of the main stem, altered shoot architecture, and altered concentrations of hormones in comparison to parents. The F1 phenotype could be rescued in a developmental-stage-dependent manner by shifting to a higher growth temperature. These F1 phenotypes were linked to two loci, one on chromosome 2 and one on chromosome 3. The F2 generation segregated plants with more severe phenotypes which were linked to the same loci as those in the F1 . This study provides novel insights into how previously unknown mechanisms controlling shoot branching and stem growth can result in hybrid incompatibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app