Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Pauli Repulsion Versus van der Waals: Interaction of Indenocorannulene with a Cu(111) Surface.

Modification of metal electrode surfaces with functional organic molecules is an important step toward organic electronics. The interaction of the buckybowl indenocorannulene with a Cu(111) surface and the two-dimensional self-assembly on the same surface was studied by means of scanning tunneling microscopy and dispersion-enabled density functional theory. Based on the conjecture of maximizing van der Waals interaction with the surface one would expect the indeno group to be aligned parallel to the surface. Theoretical investigations predict a nonparallel arrangement with the benzo ring of the indeno group located higher above the surface than the bowl rim connected to the indeno group. This adsorbate geometry is due to strong electronic interaction between molecule and surface, including substantial Pauli repulsion. The long-range ordered monolayer shows differences for two molecules of the unit cell in scanning tunneling microscopy contrast, suggesting either different polar alignments, and therefore a different tilt of the indeno group, or occupation of different adsorption sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app