Add like
Add dislike
Add to saved papers

Enantioselective Phytotoxicity of Dichlorprop to Arabidopsis thaliana: The Effect of Cytochrome P450 Enzymes and the Role of Fe.

The ecotoxicology effects of chiral herbicides have long been recognized and have drawn increasing attention. The toxic mechanisms of herbicides in plants are involved in production of reactive oxygen species (ROS) and cause damage to target enzymes, but the relationship between these two factors in the enantioselectivity of chiral herbicides has rarely been investigated. Furthermore, even though cytochromes P450 enzymes (CYP450s) have been related to the phytotoxicity of herbicides, their roles in the enantioselectivity of chiral herbicides have yet to be explored. To solve this puzzle, the CYP450s suicide inhibitor 1-aminobenzotriazole (ABT) was added to an exposure system made from dichlorprop (DCPP) enantiomers in the model plant Arabidopsis thaliana. The results indicated that different phytotoxicities of DCPP enantiomers by causing oxidative stress and acetyl-CoA carboxylase (ACCase) damage were observed in the presence and the absence of ABT. The addition of ABT decreased the toxicity of (R)-DCPP but was not significantly affected that of (S)-DCPP, resulting in smaller differences between enantiomers. Furthermore, profound differences were also observed in Fe uptake and distribution, exhibiting different distribution patterns in A. thaliana leaves exposed to DCPP and ABT, which helped bridge the relationship between ROS production and target enzyme ACCase damage through the function of CYP450s. These results offer an opportunity for a more-comprehensive understanding of chiral herbicide action mechanism and provide basic evidence for risk assessments of chiral herbicides in the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app