Add like
Add dislike
Add to saved papers

Exploration of the Electrical Conductivity of Double-Network Silver Nanowires/Polyimide Porous Low-Density Compressible Sponges.

Stress-responsive, highly flexible, and breathable nanocomposite sponges show an electrical conductivity from 1.7 to 166.6 S/cm depending on the applied stress. Key for the responsive electrical conductivity of the sponges is the change of percolation of the silver nanowires. These sponges made of short electrospun fibers and silver nanowires could be applied without any amplifier for the operation of automobile bulbs and as an efficient Joule heater. The time required for electric heating (current on) and cooling is very short. Interestingly, the maximum temperature reached by electric heating depends on the compression status. The higher the compression status, the lower is the maximum temperature, which is in accordance with the understanding of Joule heaters. It is noteworthy that these sponges are thermally, chemically, and mechanically very stable. These conductive sponges will open a new area for novel conductive devices with relevance for real-world applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app