Add like
Add dislike
Add to saved papers

Pathological and immunoblot analysis of phosphorylated TDP-43 in sporadic amyotrophic lateral sclerosis with pallido-nigro-luysian degeneration.

Transactivation response DNA-binding protein 43 kDa (TDP-43) is a key protein of sporadic amyotrophic lateral sclerosis (ALS), and phosphorylated form of TDP-43 (p-TDP-43) is a major pathological protein that accumulates in sporadic ALS. p-TDP-43 is found not only in primary motor neurons, but often propagates to non-motor systems as well. However, pallido-nigro-luysian (PNL) degeneration (PNLD) is rarely associated with ALS. We describe here a 68-year-old ALS patient presenting severe PNLD. He had difficulty walking due to poor movement of his right leg, and was diagnosed as having Parkinson's disease because of akinesia. About 2 years after onset, weakness of his left hand and leg led to a diagnosis of ALS. Tube feeding and non-invasive positive-pressure ventilation were initiated. He died of respiratory failure at the age of 71. There was no family history of either neurological disorders or dementia. Neuropathological examination revealed severe loss of neurons and gliosis in the PNL system in addition to the upper and lower motor neuron system. p-TDP-43 pathology was widespread in the PNL and motor neuron systems and also in the amygdala and hippocampus where no significant gliosis or neuronal loss was detected. Synuclein pathology was not observed in the investigated areas. Immunoblot analysis of p-TDP-43 C-terminal fragments showed a type B band pattern consistent with sporadic ALS. This is the first case of ALS with PNLD, in which p-TDP-43 distribution was widespread in the hippocampal formation (Nishihira type 2 and Brettschneider stage 4), and the type B immunoblot pattern was confirmed. Our case indicated that the PNL system can be involved in the disease process in sporadic ALS cases, although rarely. We also reviewed previous autopsy cases of ALS with PNLD to clarify the clinicopathological features.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app