Add like
Add dislike
Add to saved papers

Development and applications of a near-infrared dye-benzylguanine conjugate to specifically label SNAP-tagged proteins.

Near-infrared (NIR) fluorescent probes are advantageous over visible ones, for they can avoid the interference from the short-wavelength background emission in biological systems. However, there are a very limited number of NIR probes that can specifically label target proteins in living cells. In this work, a series of long-wavelength dyes (N-NIR, S-NIR, and K-NIR) analogous to the novel Changsha NIR family are synthesized conveniently through a new approach that is different from the previously reported one. These three dyes have similar conjugation structures but exhibit tunable photophysical properties. N-NIR and S-NIR have large extinction coefficients over 100 000, and high fluorescence quantum yields. Although NIR absorption and emission of K-NIR are inferior to the former two, it emits in a much longer wavelength region. And all the three dyes can easily pass through the cell membranes to obtain the high-resolution NIR fluorescence images. Furthermore, N-NIR is chosen as the NIR fluorophore to develop a protein-labeling reagent PYBG-D, since it demonstrates the highest fluorescence quantum yield of up to 0.4 (in methanol). PYBG-D is efficiently synthesized through Sonogashira coupling between bromo-substituted N-NIR and alkyne-substituted benzylguanine (PYBG). The conjugate PYBG-D proves to be a specific and efficient label for O6 -alkylguanine-DNA alkyltransferase (SNAP-tag) that fused to target proteins in living cells, which contributes to high resolution NIR fluorescence images under a laser confocal microscope.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app