Add like
Add dislike
Add to saved papers

Genetic algorithm with a crossover elitist preservation mechanism for protein-ligand docking.

AMB Express 2017 September 14
Protein-ligand docking plays an important role in computer-aided pharmaceutical development. Protein-ligand docking can be defined as a search algorithm with a scoring function, whose aim is to determine the conformation of the ligand and the receptor with the lowest energy. Hence, to improve an efficient algorithm has become a very significant challenge. In this paper, a novel search algorithm based on crossover elitist preservation mechanism (CEP) for solving protein-ligand docking problems is proposed. The proposed algorithm, namely genetic algorithm with crossover elitist preservation (CEPGA), employ the CEP to keep the elite individuals of the last generation and make the crossover more efficient and robust. The performance of CEPGA is tested on sixteen molecular docking complexes from RCSB protein data bank. In comparison with GA, LGA and SODOCK in the aspects of lowest energy and highest accuracy, the results of which indicate that the CEPGA is a reliable and successful method for protein-ligand docking problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app