COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Identification of Polymorphic Forms of Active Pharmaceutical Ingredient in Low-Concentration Dry Powder Formulations by Synchrotron X-Ray Powder Diffraction.

Drugs in R&D 2017 September
BACKGROUND: The identification of different (pseudo) polymorphs of an active pharmaceutical ingredient in dry powder formulations is of importance during development and entire product lifecycle, e.g., quality control. Whereas determination of polymorphic differences of pure substances is rather easy, in dry powder formulations, it is generally difficult and the difficulties increase particularly, if the substance of interest is present only in low concentrations in the formulation. Such a formulation is Spiriva® inhalation powder (Boehringer Ingelheim), which contains only 0.4 w/w% of the active pharmaceutical ingredient tiotropium bromide monohydrate in a matrix of α-lactose monohydrate as excipient.

METHODS: In this study, identification of 0.4 w/w% tiotropium bromide in the dry powder formulation was examined by X-ray powder diffraction (XRPD) using a synchrotron radiation source and the results were compared with the conventional laboratory XRPD measurements.

RESULTS: The detection limit of tiotropium bromide by the laboratory XRPD was around 2-5 w/w%, and hence, detection of 0.4 w/w% tiotropium bromide was impossible. The synchrotron XRPD was capable to detect significantly lower level of tiotropium bromide by at least an order of magnitude.

CONCLUSION: Four different polymorphic forms of tiotropium bromide present at 0.4 w/w% concentration in lactose powder blends were unambiguously identified by the synchrotron XRPD method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app