Add like
Add dislike
Add to saved papers

t-Darpp is an elongated monomer that binds calcium and is phosphorylated by cyclin-dependent kinases 1 and 5.

FEBS Open Bio 2017 September
t-Darpp (truncated isoform of dopamine- and cAMP-regulated phosphoprotein) is a protein encoded by the PPP1R1B gene and is expressed in breast, colon, esophageal, gastric, and prostate cancers, as well as in normal adult brain striatal cells. Overexpression of t-Darpp in cultured cells leads to increased protein kinase A activity and increased phosphorylation of AKT (protein kinase B). In HER2+ breast cancer cells, t-Darpp confers resistance to the chemotherapeutic agent trastuzumab. To shed light on t-Darpp function, we studied its secondary structure, oligomerization status, metal-binding properties, and phosphorylation by cyclin-dependent kinases 1 and 5. t-Darpp exhibits 12% alpha helix, 29% beta strand, 24% beta turn, and 35% random coil structures. It binds calcium, but not other metals commonly found in biological systems. The T39 site, critical for t-Darpp activation of the AKT signaling pathway, is a substrate for phosphorylation by cyclin-dependent kinase 1 and cyclin-dependent kinase 5. Gel filtration chromatography, sedimentation equilibrium analysis, blue native gel electrophoresis, and glutaraldehyde-mediated cross-linking experiments demonstrate that the majority of t-Darpp exists as a monomer, but forms low levels (< 3%) of hetero-oligomers with its longer isoform Darpp-32. t-Darpp has a large Stokes radius of 4.4 nm relative to its mass of 19 kDa, indicating that it has an elongated structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app