Add like
Add dislike
Add to saved papers

Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana.

Scientific Reports 2017 September 14
Plant growth-promoting Bacillus amyloliquefaciens FZB42 induces systemic salt tolerance in Arabidopsis and enhances the fresh and dry weight. However, the underlying molecular mechanism that allows plants to respond to FZB42 and exhibit salt tolerance is largely unknown. Therefore, we performed large-scale transcriptome sequencing of Arabidopsis shoot tissues grown under salt stress with or without FZB42 inoculation by using Illumina sequencing to identify the key genes and pathways with important roles during this interaction. In total, 1461 genes were differentially expressed (FZB42-inoculated versus non-inoculated samples) at 0 mM NaCl, of which 953 were upregulated and 508 downregulated, while 1288 genes were differentially expressed at 100 mM NaCl, of which 1024 were upregulated and 264 were downregulated. Transcripts associated with photosynthesis, auxin-related, SOS scavenging, Na(+) translocation, and osmoprotectant synthesis, such as trehalose and proline, were differentially expressed by FZB42 inoculation, which reduced the susceptibility to salt and facilitated salt adaptation. Meanwhile, etr1-3, eto1, jar1-1, and abi4-102 hormone-related mutants demonstrated that FZB42 might induce plant salt tolerance via activating plants ET/JA signaling but not ABA-dependent pathway. The results here characterize the plant transcriptome under salt stress with plant growth-promoting bacteria inoculation, thereby providing insights into the molecular mechanisms responsible for induced salt tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app