Add like
Add dislike
Add to saved papers

Superior Properties of Fc-comprising scTRAIL Fusion Proteins.

The TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising molecule for cancer treatment. However, clinical studies with soluble TRAIL failed to show therapeutic activity, which resulted in subsequent development of more potent TRAIL-based therapeutics. In this study, we applied defined oligomerization and tumor targeting as strategies to further improve the activity of a single-chain version of TRAIL (scTRAIL). We compared three different formats of EGF receptor (EGFR)-targeting dimeric scTRAIL fusion proteins [Diabody (Db)-scTRAIL, scFv-IgE heavy chain domain 2 (EHD2)-scTRAIL, scFv-Fc-scTRAIL] as well as two nontargeted dimeric scTRAIL molecules (EHD2-scTRAIL, Fc-scTRAIL) to reveal the influence of targeting and protein format on antitumor activity. All EGFR-targeted dimeric scTRAIL molecules showed similar binding properties and comparable cell death induction in vitro , exceeding the activity of the respective nontargeted dimeric format and monomeric scTRAIL. Superior properties were observed for the Fc fusion proteins with respect to production and in vivo half-life. In vivo studies using a Colo205 xenograft model revealed potent antitumor activity of all EGFR-targeting formats and Fc-scTRAIL and furthermore highlighted the higher efficacy of fusion proteins comprising an Fc part. Despite enhanced in vitro cell death induction of targeted scTRAIL molecules, however, comparable antitumor activities were found for the EGFR-targeting scFv-Fc-scTRAIL and the nontargeting Fc-scTRAIL in vivo Mol Cancer Ther; 16(12); 2792-802. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app