Add like
Add dislike
Add to saved papers

RASSF6 downregulation promotes the epithelial-mesenchymal transition and predicts poor prognosis in colorectal cancer.

Oncotarget 2017 August 16
Distant metastasis is the primary barrier for the successful treatment of patients with colorectal cancer, and thus, searching for new therapeutic targets by further exploring the molecular mechanisms of colorectal cancer metastasis is important. In this study, we investigated the biological and clinical significance of RASSF6 in colorectal cancer as well as the underlying molecular mechanisms. We found that low RASSF6 expression corresponds to a poor prognosis in colorectal cancer patients, and low RASSF6 expression is distinctly associated with tumour progression. Our in vitro analysis revealed that RASSF6 suppresses the proliferation and metastasis of DLD1 cells, and RASSF6 knockdown in HCT116 cells confirmed these observations. Our mechanistic investigation revealed that RASSF6 inhibits the expression of the classical target genes of Wnt signalling, as demonstrated by the reduced expression of TCF1, c-Jun, and c-Myc in RASSF6-overexpressing DLD1 stable cell lines. Furthermore, we show that RASSF6 functions as a negative regulator of the epithelial-mesenchymal transition; the expression levels of the epithelial markers ZO-1 and E-cadherin were increased, while the expression level of the mesenchymal marker Snail was decreased in a RASSF6-overexpressing DLD1 cell line. Additionally, rescue assays revealed that the activation of Wnt signalling by LiCl treatment impaired the inhibitory effect of RASSF6 on the proliferation and metastasis of colorectal cancer cells, which implies that RASSF6 suppresses the tumorigenicity of colorectal cancer cells at least in part through inhibiting Wnt signalling pathway. Collectively, these findings provide new perspectives for the future study of RASSF6 as a therapeutic target for colorectal cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app