JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural Revision of Baulamycin A and Structure-Activity Relationships of Baulamycin A Derivatives.

Total synthesis of the proposed structure of baulamycin A was performed. The spectral properties of the synthetic compound differ from those reported for the natural product. On the basis of comprehensive NMR study, we proposed two other possible structures for natural baulamycin A. Total syntheses of these two substances were performed, which enabled assignment of the correct structure of baulamycin A. Key features of the convergent and fully stereocontrolled route include Evans Aldol and Brown allylation reactions to construct the left fragment, a prolinol amide-derived alkylation/desymmetrization to install the methyl-substituted centers in the right fragment, and finally, a Carreira alkynylation to join both fragments. In addition, we have determined the inhibitory activities of novel baulamycin A derivatives against the enzyme SbnE. This SAR study provides useful insight into the design of novel SbnE inhibitors that overcome the drug resistance of pathogens, which cause life-threatening infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app