Add like
Add dislike
Add to saved papers

C1q/TNF-related protein 9 improves the anti-contractile effects of perivascular adipose tissue via the AMPK-eNOS pathway in diet-induced obese mice.

The anti-contractile property of perivascular adipose tissue (PVAT) is abolished through an endothelium-dependent pathway in obesity. C1q/tumor necrosis factor-related protein (CTRP)9 improved endothelial function by promoting endothelium-dependent vasodilatation. The aims of this study were to investigate whether CTRP9 improves the anti-contractile effect of PVAT and protects against PVAT dysfunction in obese mice. The mice were treated with a high-fat diet with or without CTRP9 treatment. Thoracic aortas with or without PVAT (PVAT+ or PVAT-) were prepared, and concentration-dependent responses to phenylephrine were measured. Obese mice showed a significantly increased contractile response, which was suppressed by CTRP9 treatment both with and without PVAT. PVAT significantly reduced the anti-contractile effect in obese mice, which was partially restored by CTRP9 treatment. Treatment of the aortic rings (PVAT+) with inhibitors of AMP protein kinase (AMPK), Akt and endothelial nitric oxide synthase (eNOS) attenuated the beneficial effect of CTRP9 on PVAT. Similar results were observed when we pretreated the aortic rings with CTRP9 ex vivo. CTRP9 significantly enhanced the phosphorylation levels of AMPK, Akt and eNOS, and reduced superoxide production and TNF-α levels in PVAT from obese mice. Our study suggests that CTRP9 enhanced the anti-contractile effect of PVAT and improved PVAT function by activating the AMPK-eNOS pathway in obese mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app