Add like
Add dislike
Add to saved papers

Ultrathin MoSe 2 @N-doped carbon composite nanospheres for stable Na-ion storage.

Nanotechnology 2017 October 21
Two-dimensional transition metal dichalcogenides are widely studied as anode materials for metal ion batteries. This application requires high electric conductivity which can be achieved by forming composites with conductive carbon. In this work, we demonstrate the creation of nanospheres composed of Mo-based thin nanosheets (MoS2 , MoSe2 and Mo2 C) uniform embedded within a N-doped carbon matrix. Using MoSe2 /N-doped carbon nanospheres as an example, we investigate in detail the electrochemical property in Na ion storage and reveal the advantage over previously reported MoSe2 electrodes (higher capacity and improved capacity retention up to 500 cycles). Furthermore, we provide evidence by ex situ x-ray diffraction to the nominal irreversible conversion reaction during the first discharge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app