Add like
Add dislike
Add to saved papers

Two-dimensional metal NaCu 6.3 Sb 3 and solid-state transformations of sodium copper antimonides.

A novel layered compound, NaCu6.3 Sb3 , has been successfully synthesized from elements. This unique structure crystallizes in the hexagonal space group P63 /mmc and has lattice constants of a = 4.2166(2) Å and c = 24.041(1) Å. The structure consists of complex Cu/Sb 2D blocks separated by Na ions. These blocks contain graphene-like hexagonal layers of either Cu or CuSb. The solid-state transformations in the Na-Cu-Sb system between Cu2 Sb-NaCu6.3 Sb3 -NaCu4 Sb2 were explored using annealing at different partial vapor pressures of Na, differential scanning calorimetry, and in situ synchrotron powder X-ray diffraction. Full reversibility of the transformation was observed, indicating that the bulk 3D Cu2 Sb phase is capable of reversible intercalation of Na ions, forming layered intercalated phases similar to intercalated graphite. The characterization of the transport properties shows that the metallic nature of the electrical conductivity is preserved, even for the Na-rich phase of NaCu4 Sb2 . Electronic structure calculations support metallic properties in the Cu-Sb layers and predict that no bands cross the Fermi level across the layers, supporting NaCu6.3 Sb3 as a two-dimensional metal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app