Add like
Add dislike
Add to saved papers

Sequential Feature-Density Doubling for Ultraviolet Plasmonics.

Patterning of nanostructures with sub-200 nm periodicities over cm2 -scale areas is challenging using standard approaches. This paper demonstrates a scalable technique for feature-density doubling that can generate nanopatterned lines with periodicities down to 100 nm covering >3 cm2 . We developed a process based on controlled wet overetching of atomic-layer deposited alumina to tune feature sizes of alumina masks down to several nm. These features transferred into silicon served as masters for template-stripping aluminum nanogratings with three different periodicities. The aluminum nanogratings supported surface plasmon polariton modes at ultraviolet wavelengths that, in agreement with calculations, depended on periodicity and incident excitation angle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app