Add like
Add dislike
Add to saved papers

Mimicking of cyproconazole behavior in the presence of Cu and Zn.

RATIONALE: The frequently used pesticide cyproconazole (Cyp) interacts with the essential elements commonly present in soil which play important roles in various enzymatic processes. These interactions predetermine the Cyp degradation pathways. We suggest a simple experimental and theoretical approach for the prediction of pesticide behavior.

METHODS: Cu/Cyp complexes are explored because of the typical Cu(II) reduction in complexes. Its level and the stability of the Cu-ligand bond depend on the type and the number of the surrounding ligands. Zn/Cyp complexes were compared as it is not expected that Zn(II) will reduce. The complexations were studied by means of electrospray ionization ion trap mass spectrometry and MS/MS collision-induced dissociations with comparative and explicative density functional theory calculations.

RESULTS: The Cyp ligand allows both Cu(II) reduction as well as, in specific cases, it protects the higher Cu oxidation state. The reduction is observed in the complexes with solely neutral Cyp where the number of ligands is below 3; a higher number protects the Cu(II) state. The metal atom binds to Cyp via N2 of the triazole ring as well as via π-electrons of the benzene ring; additional stabilization brings an interaction with the deprotonated OH group.

CONCLUSIONS: The character of Cyp interactions with doubly charged metals (Cu(II), Zn(II)) clarified the creation of Cyp metabolites. The phenyl and triazole rings are bound to the metal cation and enable access for the isopropyl ring to be cleaved leaving the common metabolite (CAS Number: 58905-19-4).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app