JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca 2+ Signaling.

In this chapter we examine the importance of cytoplasmic nanojunctions-nanometer scale appositions between organellar membranes including the molecular transporters therein-to the cell signaling machinery, with specific reference to Ca2+ transport and signaling in vascular smooth muscle and endothelial cells. More specifically, we will consider the extent to which quantitative modeling may aid in the development of our understanding of these processes. Testament to the requirement for such approaches lies in the fact that recent studies have provided evermore convincing evidence in support of the view that cytoplasmic nanospaces may be as significant to the process of Ca2+ signaling as the Ca2+ transporters, release channels, and Ca2+ -storing organelles themselves. Moreover, the disruption and/or dysfunction of cytoplasmic nanospaces may be central to the origin of certain diseases. By way of introduction, we provide a historical perspective on the identification of smooth muscle cell plasma membrane (PM)-sarcoplasmic reticulum (SR) nanospaces and the early evidence in support of their role in the generation of asynchronous Ca2+ waves. We then summarize how stochastic modeling approaches can aid and guide the development of our understanding of two basic functional steps leading to healthy smooth muscle cell contraction. We furthermore outline how more sophisticated and realistic quantitative stochastic modeling may be employed not only to test working hypotheses, but also to lead in their development in a manner that informs further experimental investigation. Finally, we consider more recently defined nanospaces such as the lysosome-SR junction, by way of demonstrating the importance of quantitative stochastic modeling to our understanding of signaling mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app