Journal Article
Review
Add like
Add dislike
Add to saved papers

New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca 2+ Stores.

Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating the influx of both Ca2+ and Na+ into cells. As a consequence, the TRPC channels have diverse functional roles in different cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca2+ concentration elevation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation, including but not limited to the Ca2+ filling state of the endoplasmic reticulum. Despite the overwhelming focus on STIM-regulated Orai channels for store-operated Ca2+ entry, evidence is growing for STIM-operated TRPC channel activities in various cell types, demonstrating both store-dependent and store-independent mechanisms of TRPC channel gating. The existence of physical and functional interactions between plasma membrane-localized TRPC channels and other proteins involved in sensing and regulating the intracellular Ca2+ store contents, such as inositol trisphosphate receptors, Junctate, and Homer, further argues for the role of TRPC proteins in linking plasma membrane ion transport with intracellular Ca2+ stores. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app