Add like
Add dislike
Add to saved papers

Single-Cell Phosphospecific Flow Cytometric Analysis of Canine and Murine Adipose-Derived Stem Cells.

This study aimed to demonstrate single-cell phosphospecific flow cytometric analysis of canine and murine adipose-derived stem/stromal cells (ADSCs). ADSCs were obtained from clinically healthy laboratory beagles and C57BL/6 mice. Cell differentiation into adipocytes, osteocytes, and chondrocytes was observed for the cultured canine ADSCs (cADSCs) and murine ADSCs (mADSCs) to determine their multipotency. We also performed single-cell phosphospecific flow cytometric analysis related to cell differentiation and stemness. Cultured cADSCs and mADSCs exhibited the potential to differentiate into adipocytes, osteocytes, and chondrocytes. In addition, single-cell phosphospecific flow cytometric analysis revealed similar β-catenin and Akt phosphorylation between mADSCs and cADSCs. On the other hand, it showed the phosphorylation of different Stat proteins. It was determined that cADSCs and mADSCs show the potential to differentiate into adipocytes, osteocytes, and chondrocytes. Furthermore, a difference in protein phosphorylation between undifferentiated cADSCs and mADSCs was identified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app