Add like
Add dislike
Add to saved papers

MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1.

Scientific Reports 2017 September 13
Silicosis is a kind of chronic, progressive and incurable lung fibrotic diseases with largely unknown and complex pathogenesis and molecular mechanisms. Mounting evidence suggests that microRNAs (miRNAs, miRs) are involved in the pathogenesis of silicosis. Our previous study based on miRNA microarray had shown that the expression levels of miR-503 were down-regulated in mouse lung tissues of silica-induced pulmonary fibrosis. Here, we validated the decreased expression of miR-503 in the fibrotic mouse lung tissues, human bronchial epithelial cells (HBE) and human lung adenocarcinoma A549 cells which were exposed to silica. In addition, overexpressed miR-503 inhibited silica-induced pulmonary fibrosis by attenuating the severity and the distribution of lesions in vivo and limiting the process of epithelial-mesenchymal transition (EMT) in vitro. Our molecular study further demonstrated that PI3K p85 is one of the target genes of miR-503 and the downstream molecules (Akt, mTOR and Snail) are tightly associated with EMT. Furthermore, the up-regulated lncRNA Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), acted as a competing endogenous RNA (ceRNA), can directly bound to miR-503, which indicated that lncRNA MALAT1 may modulate the expression of miR-503 thus triggering the activation of downstream fibrotic signaling pathways. Taken together, our data suggested that MALAT1-miR-503-PI3K/Akt/mTOR/Snail pathway plays critical roles in silica-induced pulmonary fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app