Add like
Add dislike
Add to saved papers

Urban heat island impacted by fine particles in Nanjing, China.

Scientific Reports 2017 September 13
Atmospheric aerosol particles (especially particles with aerodynamic diameters equal to or less than 2.5 μm, called PM2.5) can affect the surface energy balance and atmospheric heating rates and thus may impact the intensity of urban heat islands. In this paper, the effect of fine particles on the urban heat island intensity in Nanjing was investigated via the analysis of observational data and numerical modelling. The observations showed that higher PM2.5 concentrations over the urban area corresponded to lower urban heat island (UHI) intensities, especially during the day. Under heavily polluted conditions, the UHI intensity was reduced by up to 1 K. The numerical simulation results confirmed the weakening of the UHI intensity due to PM2.5 via the higher PM2.5 concentrations present in the urban region than those in the suburban areas. The effects of the fine particles on the UHI reduction were limited to the lowest 500-1000 m. The daily range of the surface air temperature was also reduced by up to 1.1 K due to the particles' radiative effects. In summary, PM2.5 noticeably impacts UHI intensity, which should be considered in future studies on air pollution and urban climates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app