Add like
Add dislike
Add to saved papers

Depletion of the mRNA translation initiation inhibitor, programmed cell death protein 4 (PDCD4), impairs L6 myotube formation.

Physiological Reports 2017 September
The mechanistic (mammalian) target of rapamycin complex 1 (mTORC1) signaling is vital for optimal muscle mass and function. Although the significance of mTORC1 in stimulating muscle growth is unequivocal, evidence in support of its role during muscle regeneration is less clear. Here, we showed that the abundance (protein and mRNA) of the mTORC1/S6K1 substrate, programmed cell death protein 4 (PDCD4), is upregulated at the onset of differentiation of L6 and C2C12 cells. The increase in PDCD4 was not associated with any changes in S6K1 activation, but the abundance of beta transducing repeat-containing protein ( β -TrCP), the ubiquitin ligase that targets PDCD4 for degradation, increased. Myoblasts lacking PDCD4 showed impaired myotube formation and had markedly low levels of MHC-1. Analysis of poly (ADP-ribose) Polymerase (PARP), caspase 7 and caspase 3 indicated reduced apoptosis in PDCD4-deficient cells. Our data demonstrate a role for PDCD4 in muscle cell formation and suggest that interventions that target this protein may hold promise for managing conditions associated with impaired myotube formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app