Add like
Add dislike
Add to saved papers

Characterization of wash-off from urban impervious surfaces and SuDS design criteria for source control under semi-arid conditions.

Knowledge about pollutant wash-off from urban impervious surfaces is a key feature for developing effective management strategies. Accordingly, further information is required about urban areas under semi-arid climate conditions at the sub-catchment scale. This is important for designing source control systems for pollution. In this study, a characterization of pollutant wash-off has been performed over sixteen months, at the sub-catchment scale for urban roads as impervious surfaces. The study was conducted in Valencia, Spain, a city with a Mediterranean climate. The results show high event mean concentrations for suspended solids (98mg/l), organic matter (142mgCOD/l, 25mgBOD5 /l), nutrients (3.7mgTN/l, 0.4mgTP/l), and metals (0.23, 0.32, 0.62 and 0.17mg/l for Cu, Ni, Pb, and Zn, respectively). The results of the runoff characterization highlight the need to control this pollution at its source, separately from wastewater because of their different characteristics. The wash-off, defined in terms of mobilized mass (g/m2 ) fits well with both process-based and statistical models, with the runoff volume and rainfall depth being the main explanatory variables. Based on these results and using information collected from hydrographs and pollutographs, an approach for sizing sustainable urban drainage systems (SuDS), focusing on water quality and quantity variables, has been proposed. By setting a concentration-based target (TSS discharged to receiving waters <35mg/l), the results indicate that for a SuDS type detention basin (DB), an off-line configuration performs better than an on-line configuration. The resulting design criterion, expressed as SuDS volume per unit catchment area, assuming a DB type SuDS, varies between 7 and 10l/m2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app