JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Inhibition of Factors XI and XII for Prevention of Thrombosis Induced by Artificial Surfaces.

Exposure of blood to a variety of artificial surface induces contact activation, a process that contributes to the host innate response to foreign substances. On the foreign surface, the contact factors, factor XII (FXII), and plasma prekallikrein undergo reciprocal conversion to their fully active protease forms (FXIIa and α-kallikrein, respectively) by a process supported by the cofactor high-molecular-weight kininogen. Contact activation can trigger blood coagulation by conversion of factor XI (FXI) to the protease FXIa. There is interest in developing therapeutic inhibitors to FXIa and FXIIa because these activated factors can contribute to thrombosis in certain situations. Drugs targeting these proteases may be particularly effective in thrombosis triggered by exposure of blood to the surfaces of implantable medical devices. Here, we review clinical data supporting roles for FXII and FXI in thrombosis induced by medical devices, and preclinical data suggesting that therapeutic targeting of these proteins may limit surface-induced thrombosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app