Add like
Add dislike
Add to saved papers

Enhancement of solvent production by overexpressing key genes of the acetone-butanol-ethanol fermentation pathway in Clostridium saccharoperbutylacetonicum N1-4.

Clostridium saccharoperbutylacetonicum N1-4 is well known as a hyper-butanol producing strain. However, little information is available concerning its butanol production mechanism and the development of more robust strains. In this study, key biosynthetic genes (either endogenous or exogenous) including the sol operon (bld-ctfA-ctfB-adc), adhE1, adhE1D485G , thl, thlA1V5A , thlAV5A and the expression cassette EC (thl-hbd-crt-bcd) were overexpressed in C. saccharoperbutylacetonicum N1-4 to evaluate their potential in enhancement of butanol production. The overexpression of sol operon increased ethanol production by 400%. The overexpression of adhE1 and adhED485 G resulted in a 5.6- and 4.9-fold higher ethanol production, respectively, producing final acetone-butanol-ethanol (ABE) titers (30.6 and 30.1gL-1 ) of among the highest as ever reported for solventogenic clostridia. The most significant increase of butanol production (by 13.7%) and selectivity (73.7%) was achieved by the overexpression of EC. These results provides a solid foundation and essential references for the further development of more robust strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app