Add like
Add dislike
Add to saved papers

Poly(N-isopropylacrylamide)-hydroxyapatite nanocomposites as thermoresponsive filling materials on dentinal surface and tubules.

HYPOTHESIS: Dental decay, asa consequence of exposure to acidic foods and drinks, represents one of the most important tooth pathologies. Recently, enamel and dentinal surface remineralization using hydroxyapatite nano- and microparticles has been proposed; however, commercial remineralizing toothpastes are quite expensive, mostly due to the high costs of hydroxyapatite. Hence, we propose a thermoresponsive hybrid nanocomposite material as filler for tooth defects. The use of thermoresponsive composite particles aims at filling exposed dentinal tubules in response to a change of temperature in the oral cavity. In addition, the presence of the organic matrix contributes to the occlusion of the dentinal tubules, therefore reducing the needed amount of hydroxyapatite.

EXPERIMENTS: Poly-N-isopropylacrylamide microgels containing different amounts of hydroxyapatite nanoparticles were prepared via radical polymerization in the presence of N-N'-methylenebisacrylamide as cross-linker followed by mechanical grinding. The nano- and microstructure of the hydrogels and their thermal behavior were studied via small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Defected teeth were treated with a dispersion of nanocomposite microparticles to simulate toothpaste action.

FINDINGS: The hydrogels maintain their structure and thermal responsiveness when loaded with an amount of hydroxyapatite nanoparticles up to 2.3%w/w. In addition, the lower critical solution temperature is not affected by the presence of the mineral particles. Exposed dentinal tubules on the surface of test tooth samples were successfully occluded after 15 cycles of treatment with a dispersion of nanocomposite microparticles alternated with washing steps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app