Add like
Add dislike
Add to saved papers

Orthogonally Functionalized Donor/Acceptor Homo- and Heterodimeric Dyes for Dye-Sensitized Solar Cells: An Approach to Introduce Panchromaticity and Control the Charge Recombination.

Organic dyes possessing conjugated π-framework forms closely packed monolayers on photoanode in dye-sensitized solar cell (DSSC), because of the limitation to control the orientation and the extend of intermolecular π-π interaction, self-aggregation of dyes leads to reduced cell performance. In this report, a series of homodimeric (D1 -D1 and D2 -D2 ) and heterodimeric (D1 -D2 and D2 -D4 ) donor/acceptor (D/A) dyes containing spiroBiProDOT π-spacer were designed and synthesized by utilizing Pd-catalyzed direct arylation reaction and correlates the device performance with monomeric dyes (D1 and D2 ). Both the thiophenes (π-spacer) of spiroBiProDOT were functionalized with same or different donor groups which led to homodimeric and heterodimeric chromophores in a single sensitizer. The homodimeric spiro-dye D1 -D1 showed higher power conversion efficiency (PCE), of 7.6% with a Voc and Jsc of 0.672 V and 16.16 mA/cm2 , respectively. On the other hand, the monomeric D1 exhibited a PCE of 3.2% (Voc of 0.64 V and Jsc of 7.2 mA/cm2 ), which is lower by 2.4 fold compared to dimeric analogue. The spiro-unit provides flexibility between the incorporated chromophores to orient on TiO2 due to four sp3 -centers, which arrest the molecular motions after chemisorption. This study shows a new molecular approach to incorporate two chromophores in the dimeric dye possessing complementary absorption characteristics toward panchromatic absorption. The attenuated charge recombination at TiO2 /Dye/redox couple interface in case of D1 -D1 , owing to better passivation of TiO2 surface, was elucidated through impedance analysis. The FT-IR spectrum of D1 -D1 adsorbed on TiO2 film indicated both the carboxylic units were involved in chemisorption which makes strong coupling between dye and TiO2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app