Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Migration of Phospholipid Vesicles Can Be Selectively Driven by Concentration Gradients of Metal Chloride Solutions.

We have investigated the migrations of phospholipid vesicles under the concentration gradients of metal ions. We microinjected metal chloride solutions, monovalent (NaCl and KCl), divalent (CaCl2 and MgCl2 ), and trivalent (LaCl3 ) salts, toward phospholipid giant vesicles (GVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). For NaCl, CaCl2 , and MgCl2 solutions, the GVs migrated straight toward the tip of the micropipette in response to the concentration gradients, whereas for KCl and LaCl3 , GVs moved to the opposite direction. Our motion tracking of lipid domains in a vesicle membrane showed no unidirectional flow in the membrane during the vesicle migration, indicating that the Marangoni mechanism is not responsible for the observed vesicle migration. We calculated the diffusiophoretic velocities for symmetric and asymmetrical electrolytes by solving the Stokes' equation numerically. The theoretical diffusiophoretic velocities described the observed migration velocities well. Thus, we can control the migration of vesicle in response to the concentration gradient by adapting the electrolytes and the lipids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app