Add like
Add dislike
Add to saved papers

N,N-Diethyl-diaminopropane-copper(ii) oxalate self-reducible complex for the solution-based synthesis of copper nanocrystals.

Metal oxalates (C2 O4 2- , ox) have been explored as promising precursors for the direct transformation of their oxalate moieties into metallic or metal oxide crystals via thermal decomposition without the formation of any byproducts due to releasing CO2 gas. The copper(ii) oxalate (Cu(ox)) crystal is a coordination polymer composed of an infinite coordination network with a thermal decomposition temperature around 300 °C; however, their insoluble nature in any solvents and relatively high decomposition temperature do not allow the solution-based syntheses of surface-modified metallic Cu nanocrystals (NCs) in the presence of various surfactants such as long-chain alkylamines and alkylcarboxylates which have been used for increasing the dispersibility of NCs in organic solvents. In this study, the insoluble nature of Cu(ox) is overcome by mixing Cu(ox) crystals and N,N-diethyl-1,3-diaminopropane (dedap) to form a discrete complex, [Cu(ox)(dedap)2 ], whose structure is determined by X-ray crystallographic analysis. The obtained complex is well soluble in polar solvents and miscible with surfactants. Furthermore, it is decomposed at a moderate temperature of <170 °C with the evolution of CO2 gas; as a result, Cu NCs dispersible in organic solvents have been synthesized in suitable surfactants, such as the mixture of oleic acid, dodecylamine, and octylamine utilized as a reaction solvent. In addition, their potential application of the surface-modified Cu NCs as a conductive-ink has been preliminarily tested. The Cu film sintered at 280 °C exhibits a resistivity of 40 μΩ cm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app