Add like
Add dislike
Add to saved papers

Right ventricle outflow tract prestenting: In vitro testing of rigidity and corrosion properties.

BACKGROUND: The aim of this study was to assess the resistance to compression (stiffness) of frequently used stents for right ventricular outflow tract prestenting. In addition, to assess the corrosion potential when different types of stent alloys come into contact with each other.

METHOD: Different stents were tested in vitro in various combinations at specialized metallurgic laboratories. A bench compression test was used to assess resistance to compression of singular and joined combinations of stents. Corrosion was evaluated by standardized electrochemical galvanic tests in physiological solutions at 37°C. Single stents and combinations of stents were evaluated over a period of 4-12 weeks.

RESULTS: Relative stiffness of the stents Optimus/Andrastent XXL/Intrastent LD Max/8zig Cheatham-Platinum, expressed as load per length to deform the stent for 1 mm at 22 mm was 100/104/161/190. Adding additional stents to a single stent significantly strengthened the joined couples (P < 0.001). The lowest galvanic corrosion rates (about 0.000001 mm/year) were observed for the joined CP-Andrastent, Andra-Sapien, and Andra-SapienXT. The corrosion rate for coupled CP-Sapien and CP-SapienXT was somewhat higher (about 0.000003 mm/year). The materials with the highest corrosion rates resulted in material losses of, respectively, 17 and 24 µg/year, which is negligible over a lifetime.

CONCLUSION: Adding stents to a single stent significantly increases stiffness which will reduce the risk of metal fatigue failure. Corrosion of individual stents or stent combinations occurs, but is negligible over a human lifetime with low risk of biological effects. No mechanical integrity problems are thus expected as there is only 0.3% of the initial diameter of the struts of a stent that will be lost as a consequence of corrosion after 100 years.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app