Add like
Add dislike
Add to saved papers

Thermally Reversible and Irreversible Phase Transition Behaviors in Poly(ethylene oxide)/Ionic Liquid Mixtures.

The irreversible and reversible phase transition behaviors during phase separation-recovery (heating-cooling) cycles for poly(ethylene oxide)/1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (PEO/[EMIM][BF4 ]) mixtures with a lower critical solution temperature phase diagram are reported for the first time. The evident differential scanning calorimetry endothermic and exothermic peaks are observed during the heating-cooling scan cycles near the phase boundary, in which the large heat loss for samples below the critical composition (60 wt% PEO) and obvious downward shift of phase transition temperature for all the compositions between the first and second cycles are particularly attractive. After the first recovery process, a reversible behavior during the next cycles is expected. These interesting phenomena are further confirmed by optical microscopy and Fourier-transform infrared measurements. It is demonstrated that the disruption and partial recovery of the hydrogen bonds, combined with the conformational change of PEO chains, can contribute to this irreversible behavior as well as a conversion to reversible phase transition behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app