Add like
Add dislike
Add to saved papers

Functional characterization of Vip3Ab1 and Vip3Bc1: Two novel insecticidal proteins with differential activity against lepidopteran pests.

Scientific Reports 2017 September 12
In this work, we characterized 2 novel insecticidal proteins; Vip3Ab1 and Vip3Bc1. These proteins display unique insecticidal spectra and have differential rates of processing by lepidopteran digestive enzymes. Furthermore, we have found that both proteins exist as tetramers in their native state before and after proteolysis. In addition, we expressed truncated forms and protein chimeras to gain a deeper understanding of toxin specificity and stability. Our study confirms a role for the C-terminal 65 kDa domain in directing insect specificity. Importantly, these data also indicate a specific interaction between the 20 kDa amino terminus and 65 kDa carboxy terminus, after proteolytic processing. We demonstrate the C-terminal 65 kDa to be labile in native proteolytic conditions in absence of the 20 kDa N-terminus. Thus, the 20 kDa fragment functions to provide stability to the C-terminal domain, which is necessary for lethal toxicity against lepidopteran insects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app