Add like
Add dislike
Add to saved papers

In vivo pH measurement at the site of calcification in an octocoral.

Scientific Reports 2017 September 12
Calcareous octocorals are ecologically important calcifiers, but little is known about their biomineralization physiology, relative to scleractinian corals. Many marine calcifiers promote calcification by up-regulating pH at calcification sites against the surrounding seawater. Here, we investigated pH in the red octocoral Corallium rubrum which forms sclerites and an axial skeleton. To achieve this, we cultured microcolonies on coverslips facilitating microscopy of calcification sites of sclerites and axial skeleton. Initially we conducted extensive characterisation of the structural arrangement of biominerals and calcifying cells in context with other tissues, and then measured pH by live tissue imaging. Our results reveal that developing sclerites are enveloped by two scleroblasts and an extracellular calcifying medium of pH 7.97 ± 0.15. Similarly, axial skeleton crystals are surrounded by cells and a calcifying medium of pH 7.89 ± 0.09. In both cases, calcifying media are more alkaline compared to calcifying cells and fluids in gastrovascular canals, but importantly they are not pH up-regulated with respect to the surrounding seawater, contrary to what is observed in scleractinians. This points to a potential vulnerability of this species to decrease in seawater pH and is consistent with reports that red coral calcification is sensitive to ocean acidification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app