Add like
Add dislike
Add to saved papers

Adaptive fractional-order total variation image restoration with split Bregman iteration.

ISA Transactions 2017 September 9
Alleviating the staircase artifacts for variation method and adjusting the regularization parameters adaptively with the characteristics of different regions are two main issues in image restoration regularization process. An adaptive fractional-order total variation l1 regularization (AFOTV-l1) model is proposed, which is resolved by using split Bregman iteration algorithm (SBI) for image estimation. An improved fractional-order differential kernel mask (IFODKM) with an extended degree of freedom (DOF) is proposed, which can preserve more image details and effectively avoid the staircase artifact. With the SBI algorithm adopted in this paper, fast convergence and small errors are achieved. Moreover, a novel regularization parameters adaptive strategy is given. Experimental results, by using the standard image library (SIL), the lung imaging database consortium and image database resource initiative (LIDC-IDRI), demonstrate that the proposed methods have better approximation, robustness and fast convergence performances for image restoration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app