Add like
Add dislike
Add to saved papers

Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling.

Highly efficient simultaneous removal of Cu(II) and tetracycline (TET) from aqueous solution was accomplished by iron and zinc doped sawdust biochar (Fe/Zn-biochar). The mutual effects and inner mechanisms of their adsorption onto Fe/Zn-biochar were systematically investigated via sole and binary systems, sorption isotherm and adsorption kinetics models. The liquid-film diffusion step might be the rate-limiting step for tetracycline, the interaction of Cu(II) was more likely controlled by both intra particle diffusion model and liquid film diffusion model. The fitting of experimental data with kinetic models, Temkin model indicates that the adsorption process of tetracycline and Cu(II) involve chemisorption, and physico-chemical adsorption, respectively. There exists site competition and enhancement of Cu(II) and tetracycline on the sorption to Fe/Zn-biochar. The results of this study indicate that modification of biochar derived from sawdust shows great potential for simultaneous removal of Cu(II) and tetracycline from co-contaminated water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app