Add like
Add dislike
Add to saved papers

Difference in glycogen metabolism (glycogen synthesis and glycolysis) between normal and dysplastic/malignant oral epithelium.

BACKGROUND: The purpose of this study was to investigate a difference in glycogen metabolism (glycogen synthesis and glycolysis) between the iodine stained (normal non-keartinized) and the unstained (dysplasctic/malignant) oral epithelium.

METHODS: Twenty-one frozen tissue samples of iodine-stained and unstained mucosal tissue were obtained from 21 OSCC patients. Serial frozen sections were cut and examined with the hematoxylin-eosin and periodic acid-Schiff methods and immunohistochemical (IHC) staining for Ki67, P53, molecules associated with glycogenesis (i.e., glycogen synthase (GS) and phospho-glycogen synthase (PGS)), and molecules associated with glycogenolysis (i.e., glycogen phosphorylase isoenzyme BB (GPBB) examine the glycogen metabolism in OSCC. Additionally, in vitro study, the expression levels of GS and GPBB in the cultured cells were analyzed by immunofluorescent staining, Western blot analysis, and the real-time quantitative polymerase chain reaction (PCR).

RESULTS: There was no significant difference in GS and PGS immunoactivity between iodine stained and unstained area. On the other hand, significantly greater GPBB immunoreactivity was observed in the basal and parabasal layers of iodine-unstained epithelium, where higher positivity for p53 and Ki67 was also showed. Additionally, western blot analysis, immunofluorescent staining, and real-time quantitative PCR revealed that the oral squamous cancer cells exhibited greater expression of GPBB than normal epithelial cells.

CONCLUSIONS: The results of this study showed that GPBB expression, which resulted in up-regulation of glycogenolysis, is enhanced in oral dysplastic/malignant epithelium compared with non-keartinized normal epithelium, in spite of the fact that glycogenesis continues in both of them. Premalignant and malignant epithelial cells consume greater quantities of energy due to their increased proliferation, and hence, exhaust their glycogen stores, which resulting in negative stain reaction with iodine solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app