Add like
Add dislike
Add to saved papers

Nonparametric bootstrap technique for calibrating surgical SmartForceps: theory and application.

Knowledge of forces, exerted on the brain tissue during the performance of neurosurgical tasks, is critical for quality assurance, case rehearsal, and training purposes. Quantifying the interaction forces has been made possible by developing SmartForceps, a bipolar forceps retrofitted by a set of strain gauges. The forces are estimated using voltages read from strain gauges. We therefore need to quantify the force-voltage relationship to estimate the interaction forces during microsurgery. This problem has been addressed in the literature by following the physical and deterministic properties of the force-sensing strain gauges without obtaining the precision associated with each estimate. In this paper, we employ a probabilistic methodology by using a nonparametric Bootstrap approach to obtain both point and interval estimates of the applied forces at the tool tips, while the precision associated with each estimate is provided. To show proof-of-concept, the Bootstrap technique is employed to estimate unknown forces, and construct necessary confidence intervals using observed voltages in data sets that are measured from the performance of surgical tasks on a cadaveric brain. Results indicate that the Bootstrap technique is capable of estimating tool-tissue interaction forces with acceptable level of accuracy compared to the linear regression technique under the normality assumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app