Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Droplet Transport in a Nanochannel Coated by Hydrophobic Semiflexible Polymer Brushes: The Effect of Chain Stiffness.

We study the influence of chain stiffness on droplet flow in a nanochannel, coated with semiflexible hydrophobic polymers by means of nonequilibrium molecular dynamics simulations. The studied system is then a moving droplet in the slit channel, coexisting with its vapor and subjected to periodic boundary conditions in the flow direction. The polymer chains, grafted by the terminal bead to the confining walls, are described by a coarse-grained model that accounts for chain connectivity, excluded volume interactions and local chain stiffness. The rheological, frictional and dynamical properties of the brush are explored over a wide range of persistence lengths. We find a rich behavior of polymer conformations and concomitant changes in the friction properties over the wide range of studied polymer stiffnesses. A rapid decrease in the droplet velocity was observed as the rigidity of the chains is increased for polymers whose persistence length is smaller than their contour length. We find a strong relation between the internal dynamics of the brush and the droplet transport properties, which could be used to tailor flow properties by surface functionalization. The monomers of the brush layer, under the droplet, present a collective "treadmill belt" like dynamics which can only be present due the existence of grafted chains. We describe its changes in spatial extension upon variations of polymer stiffness, with bidimensional velocity and density profiles. The deformation of the polymer brushes due to the presence of the droplet is analyzed in detail. Lastly, the droplet-gas interaction is studied by varying the liquid to gas ratio, observing a 16% speed increase for droplets that flow close to each other, compared to a train of droplets that present a large gap between consecutive droplets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app